

HPS 系列

智能冷水机


- 不锈钢板式热交换器
- 拥有多种通信可选
- 内部膨胀阀具有制冷和加热功能
- 1.5-5KW冷却能力
- 水泵、压缩机具备电流监测
- 控温精度±0.1°C

- 総 风冷系列
- **%** 水冷系列
- □ 电子系列

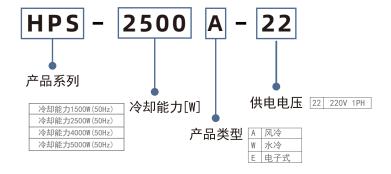
原理参数

○ 工作原理

○ 冷冻回路(红色)

- 1、压缩机将冷媒压缩,形成高温高压的气体。
- 2、高温高压的冷媒气体经过冷凝器采用风冷形式使其液化,液化时放出的热量被排到空气中。
- 3、液化的高压冷媒经过膨胀阀后形成低温冷媒气液混合物。
- 4、低温低压的冷媒气液混合物经过热交换器后汽化,冷媒汽化时吸收热量。

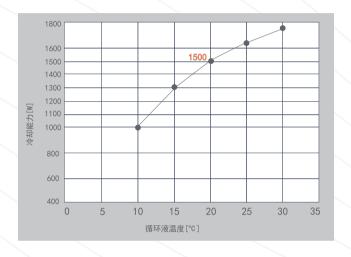
○ 循环液回路(蓝色)

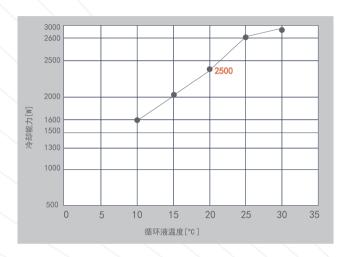

- 1、输出的水与客户端的设备进行热交换,带回的热量返回水箱与热交换器进行热交换。
- 2、具备冷水出口温度和流量监控。
- 3、液位可视化管理。

○ 应用领域

○ 型号说明

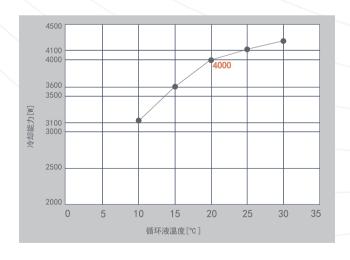
例如

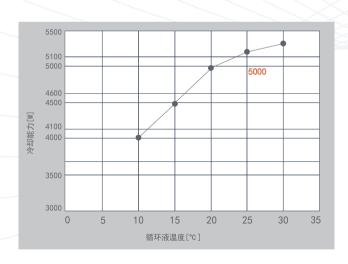

〇 技术参数


设备型号	HPS-1500A-22	HPS-2500A-22	HPS-4000A-22	HPS-5000A-22
冷却能力	1500W	2400W	4000W	4950W
电源	220V/50Hz 1PH			
输入功率	1440W	1595W	2480W	2730W
控制方式	智能PID			
通讯方式	标配DIO和modbus RTU			
控温精度	±0.1℃			
加热功率	500W			
节流方式	膨胀阀			
压缩机功率	600W	755W	1640W	1890W
风机功率	90W	90W	90W	90W
水泵功率	750W	750W	750W	750W
水泵扬程	75m	75m	75m	75m
最大流量	35L/min	35L/min	35L/min	35L/min
水箱容积	5L			
回水口径	Rc1/2			
出水口径	Rc1/2			
排水口	Rc1/4			
噪音	< 54dBn	< 55dBn	< 58dB	< 60dB
制冷剂	R410A			
循环液	水/纯水/乙二醇水溶液等			
环境温度	5 ~ 40℃			
出水温度	5 ~ 40℃			
机器净重	55kg	55kg	75kg	75kg
外形尺寸L×D×H	500 x 377 x 623	500 x 377 x 623	592x 377 x 976	592x 377 x 976
(不包含出水口)	(mm)	(mm)	(mm)	(mm)

产品详解

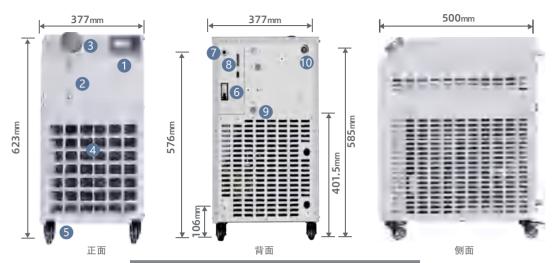
〇 能力曲线

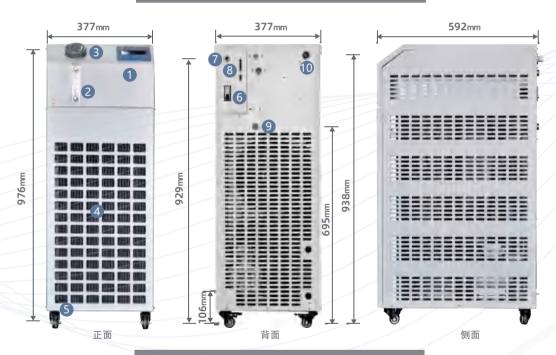

冷却能力测试(在室温25℃下测定)



HPS-1500A机型

HPS-2500A机型

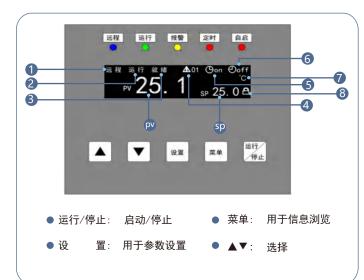



HPS-4000A机型

HPS-5000A机型

○ 外观与尺寸

外形尺寸1: HPS-1500A-22/HPS-2500A-22


外形尺寸1: HPS-4000A-22/HPS-5000A-22

编号	名称	编号	名称
0	操作面板	6	断路器
2	水位指示	7	电源电缆口
3	注水口	8	通讯接口
4	滤网	9	出水口
5	脚轮 (带锁定)	10	回水口

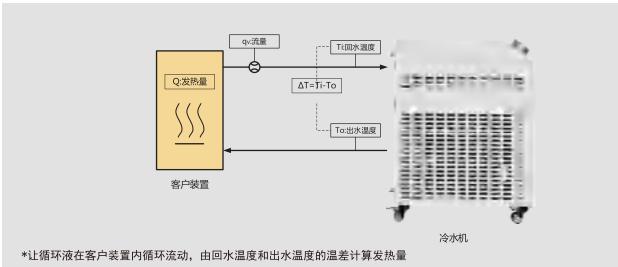
操作与选型

○ 使用方法及诊断

便捷操作与面板显示

- 显示设备当前的控制方式:本地、DIO、485、智选
- ② 显示设备"运行"或"停机"
- 3 显示设备"降温"、"升温"和"就绪"
- 4 当有报警时显示,并显示有报警的条数
- ⑤ 当启用"定时开机"时显示
- ⑥ 当启用"定时关机"时显示
- ② 温度单位,可以是摄氏度℃和华氏度°F
- ⑧ 显示SP处于锁定状态,此时▲▼不能设定SP
- ❷ 显示当前温度值 PV区:显示当前实际值
- ூ 显示当前设定值 SP区:显示当前设定值

诊断代码


面板代号	警报原因	运行状态
[AL01]	系统报警	停机
[AL02]	液位低报警	停机
[AL03]	出口温度高报警	继续运行
[AL04]	出口温度低报警	继续运行
[AL05]	通讯超时报警	继续运行
[AL06]	出口压力高报警	继续运行
[AL07]	出口压力低报警	继续运行
[AL08]	漏液报警	继续运行
[AL09]	电阻率高报警	继续运行
[AL10]	电阻率低报警	继续运行
[AL11]	流量低报警	继续运行
[AL12]	水泵电流高报警	停机
[AL13]	水泵电流低报警	停机
[AL14]	风扇电流高报警	停机
[AL15]	风扇电流低报警	停机
[AL16]	压机电流高报警	停机
[AL17]	压机电流低报警	停机
[AL18]	出口温度高温异常	停机
[AL19]	回口温度高温异常	停机
[AL20]	出口压力高压异常	停机
[AL21]	吸入温度高温异常	停机
[AL22]	吸入温度低温异常	停机
[AL23]	过热度低异常	停机
[AL24]	压机高压压力高异常	停机

面板代号	警报原因	运行状态
[AL25]	压机高压压力低异常	停机
[AL26]	压机低压压力高异常	停机
[AL27]	压机低压压力低异常	停机
[AL28]	泵动作异常	停机
[AL29]	压力过载	停机
[AL30]	内存(ROM)错误	停机
[AL31]	泵维护时间到	继续运行
[AL32]	风扇维护时间到	继续运行
[AL33]	压机维护时间到	继续运行
[AL34]	出口温度传感器异常	停机
[AL35]	回口温度传感器异常	停机
[AL36]	备用温度传感器异常	
[AL37]	备用温度传感器异常	
[AL38]	吸入温度传感器异常	停机
[AL39]	出口温度传感器异常	继续运行
[AL40]	高压压力传感器异常	停机
[AL41]	低压压力传感器异常	停机
[AL42]	出口压力传感器异常	停机
[AL43]	回口压力传感器异常	继续运行
[AL44]	流量传感器异常	继续运行
[AL45]	电阻传感器异常	继续运行
[AL46]	泵电流传感器异常	继续运行
[AL47]	风扇电流传感器异常	继续运行
[AL48]	压缩机电流传感器异常	继续运行

○ 选型原理

客户装置发热量未知的场合

计算公式: $Q = q_m \times C \times (Ti - To) = \frac{\rho \times q_v \times C \times \Delta T}{60}$

举例说明

客户装置的发热量(Q)	未知[W]
循环液	清水
循环液质量流量(qm)	$(\rho \times q_v \div 60) [kg/s]$
循环液的密度(ρ)	1[kg/L]
循环液体积流量(q _v)	设为: 14[L/min]
循环液的比热(C)	4. $2 \times 10^{3} [J/(kg \cdot {}^{\circ}C)]$
循环液出水温度(To)	25[°C]
循环液回水温度(Ti)	27[°C]

● 代入公式得:

$$Q = \frac{\rho \times Q_{V} \times C \times \triangle T}{60} = \frac{1 \times 14 \times 4.2 \times 10^{3} \times 2}{60} = 1960 [W]$$

考虑20%的余量,要求冷水机的能力为: 1960[W] ×120% = 2352[W] ≈2500[W]

因此,推荐选择机型为: HPS-2500A

河北艾法茨科技有限公司

地址:河北省石家庄市高新区湘江道号319号

网址: www.aifaci.cn

服务热线: 0311-66682858 13126155218